如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C .
(1)求抛物线的解析式;
(2) P 是线段 AC 上一动点,且不与点 A , C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M , N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m .
①当△ A ' MN 在 ΔOAB 内部时,求 m 的取值范围;
②是否存在点 P ,使 S △ A ' MN = 5 6 S △ OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.
如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴与轴相交于点M. (1)求抛物线的解析式和对称轴; (2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的 正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求 出点N的坐标;若不存在,请你说明理由.
如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C. (1)已知AC=3,求点B的坐标; (2)若AC=, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同 一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).
某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元. (1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只? (2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只? (3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96% 且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?
如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2. (1)求证:OD=OE; (2)求证:四边形ABED是等腰梯形; (3)若AB="3DE," △DCE的面积为2, 求四边形ABED的面积.
某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费. (1)分别写出甲、乙两厂的收费(元) 、(元)与印制数量(本)之间的关系式; (2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.