首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 105

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

登录免费查看答案和解析

如图,在平面直角坐标系中,点O为坐标原点,抛物线yax2bx