抛物线 y = x 2 + bx + c 经过点 A ( - 3 , 0 ) 和点 B ( 2 , 0 ) ,与 y 轴交于点 C .
(1)求该抛物线的函数表达式;
(2)点 P 是该抛物线上的动点,且位于 y 轴的左侧.
①如图1,过点 P 作 PD ⊥ x 轴于点 D ,作 PE ⊥ y 轴于点 E ,当 PD = 2 PE 时,求 PE 的长;
②如图2,该抛物线上是否存在点 P ,使得 ∠ ACP = ∠ OCB ?若存在,请求出所有点 P 的坐标;若不存在,请说明理由.
已知,如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,10),C(0,4), 点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当为何值时,四边形OPDC的面积是梯形COAB面积的? (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与的函数关系式,并写出自变量的取值范围。
阅读下列材料,并解决后面的问题. 材料:一般地,n个相同的因数相乘:记为。如23=8,此时,3叫做以2为底8的对数,记为。 一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为。 问题: (1)计算以下各对数的值: (2)观察(1)中三数4、16、64之间满足怎样的关系式?之间又满足怎样的关系式? (3)由(2)的结果,你能归纳出一个一般性的结论吗? (4)根据幂的运算法则:以及对数的含义证明上述结论。 证明:
某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天? (2)若甲工程队独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程; (3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点. (1)求证:四边形MENF是菱形; (2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系并证明你的结论.
如图,一次函数与反比例函数在第一象限的图象交于点B,且点B的横坐标为1,过点B作轴的垂线,C为垂足,若,求一次函数和反比例函数的解析式.