已知点 是抛物线 , , 为常数, , 与 轴的一个交点.
(Ⅰ)当 , 时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与 轴的另一个交点为 ,与 轴的交点为 ,过点 作直线 平行于 轴, 是直线 上的动点, 是 轴上的动点, .
①当点 落在抛物线上(不与点 重合),且 时,求点 的坐标;
②取 的中点 ,当 为何值时, 的最小值是 ?
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点 在 的左侧),且 , ,与 轴交于 ,抛物线的顶点坐标为 .
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)过点 作直线 轴,交 轴于点 ,点 是抛物线上 、 两点间的一个动点(点 不与 、 两点重合), 、 与直线 分别交于点 、 ,当点 运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线 过A、B两点,与x轴另一交点为C.
(1)求抛物线解析式及C点坐标.
(2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积.
(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由.
如图所示,已知抛物线 ,与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
如图,在平面直角坐标系中,点 为坐标原点,抛物线 的顶点是 ,将 绕点 顺时针旋转 后得到 ,点 恰好在抛物线上, 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2) 是线段 上一动点,且不与点 , 重合,过点 作平行于 轴的直线,与 的边分别交于 , 两点,将 以直线 为对称轴翻折,得到△ ,设点 的纵坐标为 .
①当△ 在 内部时,求 的取值范围;
②是否存在点 ,使 ,若存在,求出满足条件 的值;若不存在,请说明理由.
阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有: , , , .
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线 经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
如图,抛物线 与 轴交于 , , 两点(点 在点 的左侧),与 轴交于点 ,且 , 的平分线 交 轴于点 ,过点 且垂直于 的直线 交 轴于点 ,点 是 轴下方抛物线上的一个动点,过点 作 轴,垂足为 ,交直线 于点 .
(1)求抛物线的解析式;
(2)设点 的横坐标为 ,当 时,求 的值;
(3)当直线 为抛物线的对称轴时,以点 为圆心, 为半径作 ,点 为 上的一个动点,求 的最小值.
如图,抛物线 与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.
如图1,抛物线 的顶点 在 轴上,交 轴于 ,将该抛物线向上平移,平移后的抛物线与 轴交于 , ,顶点为 .
(1)求点 的坐标和平移后抛物线的解析式;
(2)点 在原抛物线上,平移后的对应点为 ,若 ,求点 的坐标;
(3)如图2,直线 与平移后的抛物线交于 .在抛物线的对称轴上是否存在点 ,使得以 , , 为顶点的三角形是直角三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 和点 ,与 轴交于点 .
(1)求抛物线 的函数表达式及点 的坐标;
(2)点 为坐标平面内一点,若 ,求点 的坐标;
(3)在抛物线上是否存在点 ,使 ?若存在,求出满足条件的所有点 的坐标;若不存在,请说明理由.
已知二次函数 y= ax 2﹣2 ax+ c( a<0)的最大值为4,且抛物线过点( ,﹣ ,点 P( t,0)是 x轴上的动点,抛物线与 y轴交点为 C,顶点为 D.
(1)求该二次函数的解析式,及顶点 D的坐标;
(2)求| PC﹣ PD|的最大值及对应的点 P的坐标;
(3)设 Q(0,2 t)是 y轴上的动点,若线段 PQ与函数 y= a| x| 2﹣2 a| x|+ c的图象只有一个公共点,求 t的取值.
阅读下面的材料:
如果函数 满足:对于自变量 取值范围内的任意 , ,
(1)若 ,都有 ,则称 是增函数;
(2)若 ,都有 ,则称 是减函数.
例题:证明函数 是增函数.
证明:任取 ,且 , .
则 .
且 , ,
, .
,即 , .
函数 是增函数.
根据以上材料解答下列问题:
(1)函数 , (1) , (2) , (3) , (4) ;
(2)猜想 是 函数(填“增”或“减” ,并证明你的猜想.
抛物线 与 轴交于 、 两点,与 轴交于点 ,点 的坐标为 ,点 的坐标为 .点 为抛物线 上的一个动点.过点 作 轴于点 ,交直线 于点 .
(1)求 、 的值;
(2)设点 在抛物线 的对称轴上,当 的周长最小时,直接写出点 的坐标;
(3)在第一象限,是否存在点 ,使点 到直线 的距离是点 到直线 的距离的5倍?若存在,求出点 所有的坐标;若不存在,请说明理由.