如图,已知抛物线 y = a x 2 + bx + 6 ( a ≠ 0 ) 与 x 轴交于点 A ( − 3 , 0 ) 和点 B ( 1 , 0 ) ,与 y 轴交于点 C .
(1)求抛物线 y 的函数表达式及点 C 的坐标;
(2)点 M 为坐标平面内一点,若 MA = MB = MC ,求点 M 的坐标;
(3)在抛物线上是否存在点 E ,使 4 tan ∠ ABE = 11 tan ∠ ACB ?若存在,求出满足条件的所有点 E 的坐标;若不存在,请说明理由.
如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为,则秋千踏板与地面的最大距离约为多少?(参考数据:≈0.8,≈0.6)
化简:.
已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上. (1)求直线BC的解析式; (2)求抛物线y=ax2+bx+c的解析式及点P的坐标; (3)设M是y轴上的一个动点,求PM+CM的取值范围.
如图①,在Rt△ABC中,∠BAC=90°,AB=AC=,D、E两点分别在AC、BC上,且DE∥AB,CD=.将△CDE绕点C顺时针旋转,得到△CD’E’(如图②,点D’、E’分别与点D、E对应),点E’在AB上,D’E’与AC相交于点M. (1)求∠ACE’的度数; (2)求证:四边形ABCD’是梯形; (3)求△AD’M的面积.
某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价) (1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式; (2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?