如图,抛物线 y = a x 2 − 5 ax + c 与坐标轴分别交于点 A , C , E 三点,其中 A ( − 3 , 0 ) , C ( 0 , 4 ) ,点 B 在 x 轴上, AC = BC ,过点 B 作 BD ⊥ x 轴交抛物线于点 D ,点 M , N 分别是线段 CO , BC 上的动点,且 CM = BN ,连接 MN , AM , AN .
(1)求抛物线的解析式及点 D 的坐标;
(2)当 ΔCMN 是直角三角形时,求点 M 的坐标;
(3)试求出 AM + AN 的最小值.
如图,点A,D在反比例函数y=(x>0)的图象上,点A的坐标是(2,4),接AD,过点A作AB⊥AD,交y轴于点B,过点D作DC⊥AD,交x轴于点C,连接BC,四边形ABCD为正方形. (1)求点C的坐标; (2)求点D的坐标.
在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形. (1)在图中标出位似中心P的位置,并写出点的坐标及△O1A1B1与△OAB的相似比; (2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标; (3)在(2)条件下,若点M(a,b)是△OAB边上一点(不与顶点重合),写出M在△OA2B2中的对应点M2的坐标.
如图,点A在双曲线y=(x>0)上,过点A作AC⊥x轴,垂足为C,线段OA的垂直平分线BD交x轴于点B,△ABC的周长为4,求点A的坐标.
小明家的玉米产量从2012年的5吨增加到2014年的6.05吨,平均每年增长的百分率是多少?
如图,在平面直角坐标系中,直线l:y=x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′. (1)求直线A′B′的解析式; (2)若直线A′B′与直线l相交于点C,求△A′BC的面积.