如图,抛物线 y = a x 2 − 5 ax + c 与坐标轴分别交于点 A , C , E 三点,其中 A ( − 3 , 0 ) , C ( 0 , 4 ) ,点 B 在 x 轴上, AC = BC ,过点 B 作 BD ⊥ x 轴交抛物线于点 D ,点 M , N 分别是线段 CO , BC 上的动点,且 CM = BN ,连接 MN , AM , AN .
(1)求抛物线的解析式及点 D 的坐标;
(2)当 ΔCMN 是直角三角形时,求点 M 的坐标;
(3)试求出 AM + AN 的最小值.
很多代数原理都可以用几何模型解释.现有若干张如图所示的卡片,请拼成一个边长为(2a+b)的正方形(要求画出简单的示意图),并指出每种卡片分别用了多少张?然后用相应的公式进行验证.
“石头、剪刀、布”是民间广为流传的游戏.现在,很多小朋友在玩这个游戏时对此进行了“升级”:喊着“左一刀,右一刀”的口号同时,左右手接连伸出手势,喊“关键时候收一刀”时收回其中一手.假如甲的左右手势分别是“石头”和“剪刀”,乙的左右手势分别是“剪刀”和“布”,双方任意收回一种手势.(1)可能会出现哪些等可能的结果?(2)乙赢的概率是多少?
认真观察下图的四个图中阴影部分构成的图案,回答下列问题:(1)利用所学知识,请写出这四个图案都具有的特征:特征1:______________________________________;特征2:______________________________________;(2)请在备用图中设计你心目中最美丽的图案,使它也具备你所写的上述特征.
如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?(请把思考过程补充完整)理由:因为:AB∥CD(已知),所以:∠2=∠3( ).因为:∠1=∠2,∠3=∠4(已知).所以:∠1=∠2=∠3=∠4(等量代换).所以:180°-∠1-∠2=180°-∠3-∠4(平角定义).即:___________(等量代换).所以:__________( ).
锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为.(1)中边上高 ;(2)当 时,恰好落在边上(如图1);(3)当在外部时(如图2),求关于的函数关系式(注明的取值范围),并求出为何值时最大,最大值是多少?