初中数学

如图所示,已知抛物线yax2+bx﹣3经过A(﹣1,0),B(4,5)两点,过点BBCx轴,垂足为C

(1)求抛物线的解析式;

(2)求tan∠ABO的值;

(3)点M是抛物线上的一个点,直线MN平行于y轴交直线ABN,如果以MNBC为顶点的四边形是平行四边形,求出点M的横坐标.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y=﹣ x 2+2 x+3与 x轴相交的于 AB两点(点 A在点 B的左侧),与 y轴相交于点 C,顶点为 D

(1)直接写出 ABC三点的坐标和抛物线的对称轴;

(2)连接 BC,与抛物线的对称轴交于点 E,点 P为线段 BC上的一个动点( P不与 CB两点重合),过点 PPFDE交抛物线于点 F,设点 P的横坐标为 m

①用含 m的代数式表示线段 PF的长,并求出当 m为何值时,四边形 PEDF为平行四边形.

②设△ BCF的面积为 S,求 Sm的函数关系式;当 m为何值时, S有最大值.

来源:2016年内蒙古兴安盟中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

已知抛物线 yax 2+ bx+ c经过 A(﹣1,0), B(4,0), C(0,﹣2)三点.

(1)请直接写出抛物线的解析式.

(2)连接 BC,将直线 BC平移,使其经过点 A,且与抛物线交于点 D,求点 D的坐标.

(3)在(2)中的线段 AD上有一动点 E(不与点 A、点 D重合),过点 Ex轴的垂线与抛物线相交于点 F,当点 E运动到什么位置时,△ AFD的面积最大?求出此时点 E的坐标和△ AFD的最大面积.

来源:2016年内蒙古通辽市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系内,抛物线 y=﹣ x 2+ bx+ cx轴交于 AB两点( AB的左侧),与 y轴交于点 C,且 AB两点的横坐标分别是方程 x 2﹣2 x﹣3=0的两个实数根.

(1)求抛物线的解析式.

(2)若抛物线的顶点为 M,作点 M关于 x轴的对称点 N,顺次连接 AMBN,在抛物线上存在点 D,使直线 CD将四边形 AMBN分成面积相等的两个四边形,求点 D的坐标.

(3)在抛物线上是否存在点 P,使△ PBCBC边上的高为 2 ?若存在,请直接写出满足条件的所有 P点的坐标;若不存在,请说明理由.

来源:2016年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知点 A(﹣2,0), B(2,0), C(3,5).

(1)求过点 AC的直线解析式和过点 ABC的抛物线的解析式;

(2)求过点 AB及抛物线的顶点 D的⊙ P的圆心 P的坐标;

(3)在抛物线上是否存在点 Q,使 AQ与⊙ P相切,若存在请求出 Q点坐标.

来源:2016年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,抛物线 C 1 : y = - 3 x 2 + 2 3 x 的顶点为,与轴的正半轴交于点

(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;

(2)将抛物线上的点变为,变换后得到的抛物线记作,抛物线的顶点为,点在抛物线上,满足,且

①当时,求的值;

②当时,请直接写出的值,不必说明理由.

来源:2016年福建省莆田市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = x 2 + 2 mx + 2 m 2 m 的顶点为 A

(1)求顶点 A 的坐标(用含有字母 m 的代数式表示);

(2)若点 B ( 2 , y B ) C ( 5 , y C ) 在抛物线上,且 y B > y C ,则 m 的取值范围是   m < 3 . 5  ;(直接写出结果即可)

(3)当 1 x 3 时,函数 y 的最小值等于6,求 m 的值.

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图所示,抛物线 yax 2 x+ c经过原点 O与点 A(6,0)两点,过点 AACx轴,交直线 y=2 x﹣2于点 C,且直线 y=2 x﹣2与 x轴交于点 D

(1)求抛物线的解析式,并求出点 C和点 D的坐标;

(2)求点 A关于直线 y=2 x﹣2的对称点 A′的坐标,并判断点 A′是否在抛物线上,并说明理由;

(3)点 Pxy)是抛物线上一动点,过点 Py轴的平行线,交线段 CA′于点 Q,设线段 PQ的长为 l,求 lx的函数关系式及 l的最大值.

来源:2016年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ACB = 90 ° OC = 2 OB tan ABC = 2 ,点 B 的坐标为 ( 1 , 0 ) .抛物线 y = x 2 + bx + c 经过 A B 两点.

(1)求抛物线的解析式;

(2)点 P 是直线 AB 上方抛物线上的一点,过点 P PD 垂直 x 轴于点 D ,交线段 AB 于点 E ,使 PE = 1 2 DE

①求点 P 的坐标;

②在直线 PD 上是否存在点 M ,使 ΔABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,二次函数yax2+bx+c的图象交x轴于AB两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.

(1)求该二次函数的解析式;

(2)若点P为线段AB上的任一动点,过点PPEAC,交BC于点E,连结CP,求△PCE面积S的最大值;

(3)设抛物线的顶点为MQ为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.

来源:2016年甘肃省天水市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点PA出发,在线段AB上沿AB的方向以每秒2个单位长度的速度运动,过点PPDy于点D,交抛物线于点C.设运动时间为t(秒).

(1)求二次函数y=﹣x2+bx+c的表达式;

(2)连接BC,当 t = 5 6 时,求△BCP的面积;

(3)如图2,动点PA出发时,动点Q同时从O出发,在线段OA上沿OA的方向以1个单位长度的速度运动.当点PB重合时,PQ两点同时停止运动,连接DQPQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出St的函数关系及t的取值范围.

来源:2016年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M10),且ab

)求抛物线顶点Q的坐标(用含a的代数式表示);

)说明直线与抛物线有两个交点;

)直线与抛物线的另一个交点记为N

)若 - 1 a - 1 2 ,求线段MN长度的取值范围;

)求QMN面积的最小值

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,二次函数 y = 1 2 x 2 + bx + c 的图象与 x 轴交于 A ( - 2 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C ,点 P 是第四象限内抛物线上的一个动点.

(1)求二次函数的解析式;

(2)如图甲,连接 AC PA PC ,若 S ΔPAC = 15 2 ,求点 P 的坐标;

(3)如图乙,过 A B P 三点作 M ,过点 P PE x 轴,垂足为 D ,交 M 于点 E .点 P 在运动过程中线段 DE 的长是否变化,若有变化,求出 DE 的取值范围;若不变,求 DE 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 经过 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 3 ) 三点, D 为直线 BC 上方抛物线上一动点, DE BC E

(1)求抛物线的函数表达式;

(2)如图1,求线段 DE 长度的最大值;

(3)如图2,设 AB 的中点为 F ,连接 CD CF ,是否存在点 D ,使得 ΔCDE 中有一个角与 CFO 相等?若存在,求点 D 的横坐标;若不存在,请说明理由.

来源:2018年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题