如图,抛物线 y = a x 2 + bx + c 经过 A ( − 1 , 0 ) , B ( 4 , 0 ) , C ( 0 , 3 ) 三点, D 为直线 BC 上方抛物线上一动点, DE ⊥ BC 于 E .
(1)求抛物线的函数表达式;
(2)如图1,求线段 DE 长度的最大值;
(3)如图2,设 AB 的中点为 F ,连接 CD , CF ,是否存在点 D ,使得 ΔCDE 中有一个角与 ∠ CFO 相等?若存在,求点 D 的横坐标;若不存在,请说明理由.
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.
直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论,不必说明理由.
已知:如图,于D,点E为BC边上的任意一点,于F,且,求的度数。
喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)观察图象,直接写出反比例函数值大于一次函数值x取值范围.