如图,直线y=与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点是劣弧AO上一动点(点与不重合).抛物线y=-经过点A、C,与x轴交于另一点B,(1)求抛物线的解析式及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。(3)连交于点,延长至,使,试探究当点运动到何处时,直线与⊙M相切,并请说明理由.
小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.
如图,在正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1). (1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’(),B’(). (2)在(1)中,若为线段上任一点,写出变化后点的对应点的坐标 ().
已知,如图,抛物线与轴交于点,与轴交于点,点的坐标为,对称轴是. (1)求该抛物线的解析式; (2)点是线段上的动点,过点作∥,分别交轴、于点P、,连接.当的面积最大时,求点的坐标; (3)在(2)的条件下,求的值.
已知:如图,内接于⊙O, 为⊙O的直径,, 点是上一个动点,连结、和, 与相交于点, 过点作于,与相交于点,连结和. (1)求证:; (2)如图1,若, 求证:; (3) 如图2,设, 四边形的面积为,求与之间的关系式.
已知:如图,矩形ABCD中, ,,点P是AD边上一个动点,, 交于点,对应点也随之在上运动,连结. (1)若是等腰三角形,求的长; (2)当时,求的长.