已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若 - 1 ⩽ a ⩽ - 1 2 ,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F. (1)求证:直线EF是⊙O的切线; (2)当直线DF与⊙O相切时,求⊙O的半径.
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C, (1)求证:CB//PD; (2)若AB=5,sin∠P=,求BC的长.
如图:在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,AB=10,AC=6, 求D到AB的距离.
如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2). (1)求点A的坐标及反比例函数的表达式; (2)结合图象直接比较:当x>0时,y1与y2的大小.
一只不透明的袋子中装有2个白球和一个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,请用树状图或列表的方法列出所有可能的结果,求出两次摸出的球颜色相同的概率.