已知抛物线 y= ax 2+ bx+ c经过 A(﹣1,0), B(4,0), C(0,﹣2)三点.
(1)请直接写出抛物线的解析式.
(2)连接 BC,将直线 BC平移,使其经过点 A,且与抛物线交于点 D,求点 D的坐标.
(3)在(2)中的线段 AD上有一动点 E(不与点 A、点 D重合),过点 E作 x轴的垂线与抛物线相交于点 F,当点 E运动到什么位置时,△ AFD的面积最大?求出此时点 E的坐标和△ AFD的最大面积.
为了倡导“节约用水,从我做起”,宜兴市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图. (1)请将条形统计图补充完整; (2)求这100个样本数据的平均数,众数和中位数; (3)根据样本数据,估计宜兴市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
解方程(本题共4小题,每小题3分,共12分) (1)x2-2x-99=0 (2)3x2-6x+1=0 (3)x(x+2)=5x+10 (4)(x-2)2=(2x+3)2
如图,AB是⊙O的直径,点D在AB的延长线上,过点D作DC切⊙O于点C,若∠A=35°,则∠D=°.
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法). (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数. (3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上. ①当t=4时,求PH的长. ②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).
如图,在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经过点D,P为抛物线上的一动点. (1)直接写出点D的坐标; (2)求抛物线的解析式; (3)求点P到点A的距离与点P到x轴的距离之差; (4)当点P位于何处时,△APB的周长有最小值,并求出△APB的周长的最小值.