如图,在平面直角坐标系中, ∠ ACB = 90 ° , OC = 2 OB , tan ∠ ABC = 2 ,点 B 的坐标为 ( 1 , 0 ) .抛物线 y = − x 2 + bx + c 经过 A 、 B 两点.
(1)求抛物线的解析式;
(2)点 P 是直线 AB 上方抛物线上的一点,过点 P 作 PD 垂直 x 轴于点 D ,交线段 AB 于点 E ,使 PE = 1 2 DE .
①求点 P 的坐标;
②在直线 PD 上是否存在点 M ,使 ΔABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.
如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m,求旗杆的高度.(=1.414,=1.732,结果保留整数)
如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B. (1)求证:直线CD是⊙O的切线; (2)过点A作直线AB的垂线交BD的延长线于点E,且AB=5,BD=2,求线段AE的长.
“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图: 根据上述信息,解答下列问题: (1)抽取的学生人数为 ; (2)将两幅统计图补充完整; (3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E. (1)若PB平分∠ABO,其余条件不变.求证:AP=CD. (2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
乐乐和欢欢同学同时去上学,从家到学校的距离都是2km,他们走路的速度为6km/h,跑步的速度为10km/h.请根据以上信息,提出一个可以用一元一次不等式解决的问题,并给出解决办法.