七巧板游戏是将一个正方形分割成七块,然后用这七块拼接成丰富多彩的几何图形.如图(a)是正方形的一种分割方法,并在每块上标了号码.(1)设正方形网格的边长为1,则面积为2的有 号图形;(2)只改变图(a)中的7号图形的位置,使它和其他部分拼成一个新的多边形,请在图(b)中画出所拼的图形(只需画出7号图形);(3)将这副七巧板的七块图形重新拼成一个和图(a)、图(b)形状不同的多边形,(不留缝隙且不相互重叠),请在图(c)中画出所拼的图形,并使多边形的顶点落在格点上.
如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB. (1)求该抛物线的解析式; (2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由. (3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒. (1)当t=5时,请直接写出点D、点P的坐标; (2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围; (3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.
如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若OF:OB=1:3,⊙O的半径R=3,求的值.
如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B到小岛C需要多长时间? (2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.
如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点. (1)求一次函数与反比例函数的解析式; (2)求△COD的面积; (3)直接写出时自变量x的取值范围.