七巧板游戏是将一个正方形分割成七块,然后用这七块拼接成丰富多彩的几何图形.如图(a)是正方形的一种分割方法,并在每块上标了号码.(1)设正方形网格的边长为1,则面积为2的有 号图形;(2)只改变图(a)中的7号图形的位置,使它和其他部分拼成一个新的多边形,请在图(b)中画出所拼的图形(只需画出7号图形);(3)将这副七巧板的七块图形重新拼成一个和图(a)、图(b)形状不同的多边形,(不留缝隙且不相互重叠),请在图(c)中画出所拼的图形,并使多边形的顶点落在格点上.
解方程:.
解下列不等式组:(1);(2)
我们知道时,也成立,若将看成的立方根,看成的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数. 试举一个例子来判断上述猜测结论是否成立; 若与互为相反数,求的值.
为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题: (1)本次调查一共抽查了多少袋方便面? (2)将图1中色素含量为B的部分补充完整; (3)图2中的色素含量为D的方便面所占的百分比是多少? (4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?
丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?