某班的学生对学校倡导的“爱心救助”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的同学一共42人。(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,请你估计全校学生共捐款多少元
已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E. (1)求证:△ABD≌△CFD. (2)求证:BE⊥AC; (3)设CE的长为m,用含m的代数式表示AC+BF.
如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC. (1)求∠ECD的度数; (2)若CE=5,求BC长.
解分式方程:﹣=1.
如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG. (1)求证:BG=CF; (2)请你判断BE+CF与EF的大小关系,并证明你的结论.
(5分)先阅读理解下面的例题,再按要求解答下列问题: 例题:解一元二次不等式x2﹣4>0 解:∵x2﹣4=(x+2)(x﹣2) ∴x2﹣4>0可化为 (x+2)(x﹣2)>0 由有理数的乘法法则“两数相乘,同号得正”,得 解不等式组①,得x>2, 解不等式组②,得x<﹣2, ∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2, 即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2. (1)一元二次不等式x2﹣16>0的解集为x>4或x<﹣4; (2)分式不等式的解集为x>3或x<1 ; (3)解一元二次不等式2x2﹣3x<0.