抛物线与轴交于点,(点在点的左边),与轴交于点,点是该抛物线的顶点.
(1)如图1,连接,求线段的长;
(2)如图2,点是直线上方抛物线上一点,轴于点,与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;
(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点,的对应点分别是点,,直线分别与直线,轴交于点,.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,其对称轴交抛物线于点 ,交 轴于点 ,已知 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 为抛物线上一动点,当 时,求点 的坐标;
(3)平行于 轴的直线交抛物线于 、 两点,以线段 为对角线作菱形 ,当点 在 轴上,且 时,求菱形对角线 的长.
如图1,二次函数 的图象与一次函数 的图象交于 , 两点,点 的坐标为 ,点 在第一象限内,点 是二次函数图象的顶点,点 是一次函数 的图象与 轴的交点,过点 作 轴的垂线,垂足为 ,且 .
(1)求直线 和直线 的解析式;
(2)点 是线段 上一点,点 是线段 上一点, 轴,射线 与抛物线交于点 ,过点 作 轴于点 , 于点 .当 与 的乘积最大时,在线段 上找一点 (不与点 ,点 重合),使 的值最小,求点 的坐标和 的最小值;
(3)如图2,直线 上有一点 ,将二次函数 沿直线 平移,平移的距离是 ,平移后抛物线上点 ,点 的对应点分别为点 ,点 ;当△ 是直角三角形时,求 的值.
如图,在平面直角坐标系中,抛物线 , 为常数, 经过两点 , ,交 轴正半轴于点 .
(1)求抛物线 的解析式.
(2)过点 作 垂直于 轴,垂足为点 ,连接 , ,将 以 为轴翻折,点 的对应点为 ,直线 交 轴于点 ,请判断点 是否在抛物线上,并说明理由.
(3)在(2)的条件下,点 是线段 (不包含端点)上一动点,过点 垂直于 轴的直线分别交直线 及抛物线于点 , ,连接 ,请探究:是否存在点 ,使 是以 为腰的等腰三角形?若存在,请求出点 的坐标;若不存在,请说明理由.
抛物线与轴交于,两点,与轴交于点,已知点的坐标为,为抛物线第一象限上一点.
(1)求抛物线的解析式;
(2)如图1,连接,,若,求的面积;
(3)如图2,连接,,若,求点的坐标.
在平面直角坐标系中,抛物线 的顶点为 .
(1)求顶点 的坐标(用含有字母 的代数式表示);
(2)若点 , 在抛物线上,且 ,则 的取值范围是 ;(直接写出结果即可)
(3)当 时,函数 的最小值等于6,求 的值.
如图,抛物线 与 轴交于 、 两点(点 在点 的左侧),与 轴交于点 .
(1)试探究 的外接圆的圆心位置,求出圆心坐标;
(2)点 是抛物线上一点(不与点 重合),且 ,求 的度数;
(3)在(2)的条件下,点 是 轴上方抛物线上一点,点 是抛物线对称轴上一点,是否存在这样的点 和点 ,使得以点 、 、 、 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.