初中数学

如图1,已知抛物线 l 1 : y = - 1 2 x 2 + x + 3 轴交于点,过点的直线与抛物线交于另一点,点到直线的距离相等.

(1)求直线的表达式;

(2)将直线向下平移 5 2 个单位,平移后的直线与抛物线交于点(如图,判断直线是否平分线段,并说明理由;

(3)已知抛物线为常数)和直线有两个交点,对于任意满足条件的,线段都能被直线平分,请直接写出之间的数量关系.

来源:2016年福建省宁德市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

已知抛物线 y = - 1 2 x 2 + bx + c 轴交于点,与轴的两个交点分别为

(1)求抛物线的解析式;

(2)已知点在抛物线上,连接,若是以为直角边的直角三角形,求点的坐标;

(3)已知点轴上,点在抛物线上,是否存在以为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2016年福建省龙岩市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

已知,抛物线经过原点,顶点为

(1)当时,求抛物线的解析式;

(2)若抛物线也经过点,求之间的关系式;

(3)当点在抛物线上,且时,求的取值范围.

来源:2016年福建省福州市中考数学试卷
  • 更新:2021-03-11
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, 为原点,四边形 是矩形,点 的坐标分别是 C ( 2 3 , 0 ) ,点 是对角线 上一动点(不与 重合),连结 ,作 ,交 轴于点 ,以线段 为邻边作矩形

(1)填空:点 的坐标为   

(2)是否存在这样的点 ,使得 是等腰三角形?若存在,请求出 的长度;若不存在,请说明理由;

(3)①求证: DE DB = 3 3

②设 ,矩形 的面积为 ,求 关于 的函数关系式(可利用①的结论),并求出 的最小值.

来源:2017年广东省中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,抛物线 经过点 ,交 轴于点

(1)求抛物线的解析式(用一般式表示);

(2)点 轴右侧抛物线上一点,是否存在点 使 S Δ ABC = 2 3 S Δ ABD ?若存在请直接给出点 坐标;若不存在请说明理由;

(3)将直线 绕点 顺时针旋转 ,与抛物线交于另一点 ,求 的长.

来源:2017年广东省深圳市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,抛物线yax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C

(1)求此抛物线的解析式;

(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;

(3)当动点E在直线AC与抛物线围成的封闭线ACBDA上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.

来源:2016年广西梧州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图1,在平面直径坐标系中,抛物线yax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;

(2)以OC为半径的⊙Oy轴的正半轴交于点E,若弦CDAB的中点M,试求出DC的长;

(3)将抛物线向上平移个单位长度(如图2)若动点Pxy)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

来源:2016年广西钦州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,矩形的边OAx轴上,边OCy轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线yax2+bx+c经过OAE三点.

(1)求此抛物线的解析式;

(2)求AD的长;

(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于AB两点(AB的左侧),与y轴交于点C,顶点为D

(1)请直接写出点ACD的坐标;

(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;

(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.

来源:2016年广西河池市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图1,已知开口向下的抛物线y1ax2﹣2ax+1过点Am,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点AB的对应点分别为点DE

(1)直接写出点ACD的坐标;

(2)当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;

(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线lx轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求St的函数关系.

来源:2016年广西桂林市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,抛物线Lyax2+bx+cx轴交于AB(3,0)两点(AB的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;

(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;

(3)设点P是抛物线L上任一点,点Q在直线lx=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

来源:2016年广西北海市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

正方形OABC的边长为4,对角线相交于点P,抛物线L经过OPA三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,

①直接写出OPA三点坐标;

②求抛物线L的解析式;

(2)求△OAE与△OCE面积之和的最大值.

来源:2016年广西百色市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,抛物线 yax 2+2 x﹣3与 x轴交于 AB两点,且 B(1,0)

(1)求抛物线的解析式和点 A的坐标;

(2)如图1,点 P是直线 yx上的动点,当直线 yx平分∠ APB时,求点 P的坐标;

(3)如图2,已知直线 y = 2 3 x - 4 9 分别与 x轴、 y轴交于 CF两点,点 Q是直线 CF下方的抛物线上的一个动点,过点 Qy轴的平行线,交直线 CF于点 D,点 E在线段 CD的延长线上,连接 QE.问:以 QD为腰的等腰△ QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ( - 1 , 0 ) 和点 B ( 4 , 0 ) ,与 y 轴交于点 C ,连接 BC ,点 P 是线段 BC 上的动点(与点 B C 不重合),连接 AP 并延长 AP 交抛物线于点 Q ,连接 CQ BQ ,设点 Q 的横坐标为 m

(1)求抛物线的解析式和点 C 的坐标;

(2)当 ΔBCQ 的面积等于2时,求 m 的值;

(3)在点 P 运动过程中, PQ AP 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

来源:2020年内蒙古呼伦贝尔市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 的坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数解析式;

(2)点 D y 轴上一点,如果直线 BD 与直线 BC 的夹角为 15 ° ,求线段 CD 的长度;

(3)如图2,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO ,求点 P 的坐标.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题