初中数学

如图1,在平面直角坐标系xOy中,抛物线 y a x 2 + 1 经过点 A 4 ,﹣ 3 ,顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过PPHl,垂足为H,连接PO

(1)求抛物线的解析式,并写出其顶点B的坐标;

(2)①当P点运动到A点处时,计算:PO  PH  ,由此发现,PO  PH(填“>”、“<”或“=”);

②当P点在抛物线上运动时,猜想POPH有什么数量关系,并证明你的猜想;

(3)如图2,设点C(1,﹣2),问是否存在点P,使得以POH为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

来源:2016年湖北省十堰市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 2 x + c y 轴交于点 A ( 0 , 6 ) ,与 x 轴交于点 B ( 6 , 0 ) ,点 P 是线段 AB 上方抛物线上的一个动点.

(1)求这条抛物线的表达式及其顶点坐标;

(2)当点 P 移动到抛物线的什么位置时,使得 PAB = 75 ° ,求出此时点 P 的坐标;

(3)当点 P A 点出发沿线段 AB 上方的抛物线向终点 B 移动,在移动中,点 P 的横坐标以每秒1个单位长度的速度变动;与此同时点 M 以每秒1个单位长度的速度沿 AO 向终点 O 移动,点 P M 移动到各自终点时停止.当两个动点移动 t 秒时,求四边形 PAMB 的面积 S 关于 t 的函数表达式,并求 t 为何值时, S 有最大值,最大值是多少?

来源:2017年山东省聊城市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 x + 2 3 x轴,y轴分别交于点A,点B,两动点DE分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和 3 个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点Ex轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F

(1)求点A,点B的坐标;

(2)用含t的代数式分别表示EFAF的长;

(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.

(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.

来源:2016年湖北省荆门市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图1,已知二次函数 y = a x 2 + 3 2 x + c ( a 0 ) 的图象与 y 轴交于点 A ( 0 , 4 ) ,与 x 轴交于点 B C ,点 C 坐标为 ( 8 , 0 ) ,连接 AB AC

(1)请直接写出二次函数 y = a x 2 + 3 2 x + c 的表达式;

(2)判断 ΔABC 的形状,并说明理由;

(3)若点 N x 轴上运动,当以点 A N C 为顶点的三角形是等腰三角形时,请写出此时点 N 的坐标;

(4)如图2,若点 N 在线段 BC 上运动(不与点 B C 重合),过点 N NM / / AC ,交 AB 于点 M ,当 ΔAMN 面积最大时,求此时点 N 的坐标.

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线 C 1 : y = - 1 4 x 2 + bx + c AB两点,与x轴另一交点为C

(1)求抛物线解析式及C点坐标.

(2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1C2相交于点D,求四边形AOCD的面积.

(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点MQPB为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由.

来源:2016年湖北省鄂州市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图1,矩形 OABC 的顶点 A C 的坐标分别为 ( 4 , 0 ) ( 0 , 6 ) ,直线 AD BC 于点 D tan OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a 0 ) A D 两点.

(1)求点 D 的坐标和抛物线 M 1 的表达式;

(2)点 P 是抛物线 M 1 对称轴上一动点,当 CPA = 90 ° 时,求所有符合条件的点 P 的坐标;

(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2

①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;

②当 1 x m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 6 x 轴相交于 A B 两点,与 y 轴相交于点 C OA = 2 OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD BD BC CD

(1)求抛物线的函数表达式;

(2)若点 D x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;

(3)在(2)的条件下,点 M x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B D M N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 )

(1)求抛物线的表达式;

(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;

(3)如图2,点 M 为该抛物线的顶点,直线 MD x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,已知一次函数 y = x + 3 的图象与 x 轴、 y 轴分别交于 A B 两点,抛物线 y = - x 2 + bx + c A B 两点,且与 x 轴交于另一点 C

(1)求 b c 的值;

(2)如图1,点 D AC 的中点,点 E 在线段 BD 上,且 BE = 2 ED ,连接 CE 并延长交抛物线于点 M ,求点 M 的坐标;

(3)将直线 AB 绕点 A 按逆时针方向旋转 15 ° 后交 y 轴于点 G ,连接 CG ,如图2, P ΔACG 内一点,连接 PA PC PG ,分别以 AP AG 为边,在他们的左侧作等边 ΔAPR ,等边 ΔAGQ ,连接 QR

①求证: PG = RQ

②求 PA + PC + PG 的最小值,并求出当 PA + PC + PG 取得最小值时点 P 的坐标.

来源:2016年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题