如图①,在平面直角坐标系中,圆心为 的动圆经过点 且与 轴相切于点 .
(1)当 时,求 的半径;
(2)求 关于 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.
(4)当 的半径为1时,若 与以上(2)中所得函数图象相交于点 、 ,其中交点 在点 的右侧,请利用图②,求 的大小.
如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC: 交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 AM+CM它的最小值.
如图1,已知二次函数 、 、 为常数, 的图象过点 和点 ,函数图象最低点 的纵坐标为 ,直线 的解析式为 .
(1)求二次函数的解析式;
(2)直线 沿 轴向右平移,得直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 ,把 沿直线 折叠,当点 恰好落在抛物线上点 时(图 ,求直线 的解析式;
(3)在(2)的条件下, 与 轴交于点 ,把 绕点 逆时针旋转 得到△ , 为 上的动点,当△ 为等腰三角形时,求符合条件的点 的坐标.
已知抛物线 G: y= mx 2﹣2 mx﹣3有最低点.
(1)求二次函数 y= mx 2﹣2 mx﹣3的最小值(用含 m的式子表示);
(2)将抛物线 G向右平移 m个单位得到抛物线 G 1.经过探究发现,随着 m的变化,抛物线 G 1顶点的纵坐标 y与横坐标 x之间存在一个函数关系,求这个函数关系式,并写出自变量 x的取值范围;
(3)记(2)所求的函数为 H,抛物线 G与函数 H的图象交于点 P,结合图象,求点 P的纵坐标的取值范围.
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,点 坐标为 ,点 坐标为 ,点 是抛物线的顶点,过点 作 轴的垂线,垂足为 ,连接 .
(1)求抛物线的解析式及点 的坐标;
(2)点 是抛物线上的动点,当 时,求点 的坐标;
(3)若点 是抛物线上的动点,过点 作 轴与抛物线交于点 ,点 在 轴上,点 在坐标平面内,以线段 为对角线作正方形 ,请写出点 的坐标.
如图,在▱ OABC中, A、 C两点的坐标分别为(4,0)、(﹣2,3),抛物线 W经过 O、 A、 C三点,点 D是抛物线 W的顶点.
(1)求抛物线 W的函数解析式及顶点 D的坐标;
(2)将抛物线 W和▱ OABC同时先向右平移4个单位长度,再向下平移 m(0< m<3)个单位长度,得到抛物线 W 1和□ O 1 A 1 B 1 C 1,在向下平移过程中, O 1 C 1与 x轴交于点 H,▱ O 1 A 1 B 1 C 1与▱ OABC重叠部分的面积记为 S,试探究:当 m为何值时, S有最大值,并求出 S的最大值;
(3)在(2)的条件下,当 S取最大值时,设此时抛物线 W 1的顶点为 F,若点 M是 x轴上的动点,点 N是抛物线 W 1上的动点,是否存在这样的点 M、 N,使以 D、 F、 M、 N为顶点的四边形是平行四边形?若存在,求出点 M的坐标;若不存在,请说明理由.
若一次函数 的图象与 轴, 轴分别交于 , 两点,点 的坐标为 ,二次函数 的图象过 , , 三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点 作 轴交抛物线于点 ,点 在抛物线上 轴左侧),若 恰好平分 .求直线 的表达式;
(3)如图(2),若点 在抛物线上(点 在 轴右侧),连接 交 于点 ,连接 , .
①当 时,求点 的坐标;
②求 的最大值.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.