初中数学

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过 A ( 0 , - 1 ) B ( 4 , 1 ) .直线 AB x 轴于点 C P 是直线 AB 下方抛物线上的一个动点.过点 P PD AB ,垂足为 D PE / / x 轴,交 AB 于点 E

(1)求抛物线的函数表达式;

(2)当 ΔPDE 的周长取得最大值时,求点 P 的坐标和 ΔPDE 周长的最大值;

(3)把抛物线 y = x 2 + bx + c 平移,使得新抛物线的顶点为(2)中求得的点 P M 是新抛物线上一点, N 是新抛物线对称轴上一点,直接写出所有使得以点 A B M N 为顶点的四边形是平行四边形的点 M 的坐标,并把求其中一个点 M 的坐标的过程写出来.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知二次函数 y = - x 2 + 6 x - 5

(1)求二次函数图象的顶点坐标;

(2)当 1 x 4 时,函数的最大值和最小值分别为多少?

(3)当 t x t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a 0 ) x 轴的交点为 A ( 1 , 0 ) B ( 3 , 0 ) ,点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) 是抛物线上不同于 A B 的两个点,记△ P 1 AB 的面积为 S 1 ,△ P 2 AB 的面积为 S 2 ,有下列结论:①当 x 1 > x 2 + 2 时, S 1 > S 2 ;②当 x 1 < 2 - x 2 时, S 1 < S 2 ;③当 | x 1 - 2 | > | x 2 - 2 | > 1 时, S 1 > S 2 ;④当 | x 1 - 2 | > | x 2 + 2 | > 1 时, S 1 < S 2 .其中正确结论的个数是 (    )

A.

1

B.

2

C.

3

D.

4

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + 3 ( a 0 )

(1)求抛物线的对称轴;

(2)把抛物线沿 y 轴向下平移 3 | a | 个单位,若抛物线的顶点落在 x 轴上,求 a 的值;

(3)设点 P ( a , y 1 ) Q ( 2 , y 2 ) 在抛物线上,若 y 1 > y 2 ,求 a 的取值范围.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

设抛物线 y = x 2 + ( a + 1 ) x + a ,其中 a 为实数.

(1)若抛物线经过点 ( - 1 , m ) ,则 m =   

(2)将抛物线 y = x 2 + ( a + 1 ) x + a 向上平移2个单位,所得抛物线顶点的纵坐标的最大值是  

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

直线 l 过点 ( 0 , 4 ) 且与 y 轴垂直,若二次函数 y = ( x - a ) 2 + ( x - 2 a ) 2 + ( x - 3 a ) 2 - 2 a 2 + a (其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴在 y 轴右侧,则 a 的取值范围是 (    )

A.

a > 4

B.

a > 0

C.

0 < a 4

D.

0 < a < 4

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = 1 2 x + 3 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = 1 3 x 2 + bx + c 经过坐标原点和点 A ,顶点为点 M

(1)求抛物线的关系式及点 M 的坐标;

(2)点 E 是直线 AB 下方的抛物线上一动点,连接 EB EA ,当 ΔEAB 的面积等于 25 2 时,求 E 点的坐标;

(3)将直线 AB 向下平移,得到过点 M 的直线 y = mx + n ,且与 x 轴负半轴交于点 C ,取点 D ( 2 , 0 ) ,连接 DM ,求证: ADM ACM = 45 °

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的部分图象如图所示,对称轴为 x = 1 2 ,且经过点 ( 2 , 0 ) .下列说法:① abc < 0 ;② 2 b + c = 0 ;③ 4 a + 2 b + c < 0 ;④若 ( 1 2 y 1 ) ( 5 2 y 2 ) 是抛物线上的两点,则 y 1 < y 2 ;⑤ 1 4 b + c > m ( am + b ) + c (其中 m 1 2 ) .正确的结论有 (    )

A.

2个

B.

3个

C.

4个

D.

5个

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = x 2 + 2 mx + 2 m 2 m 的顶点为 A

(1)求顶点 A 的坐标(用含有字母 m 的代数式表示);

(2)若点 B ( 2 , y B ) C ( 5 , y C ) 在抛物线上,且 y B > y C ,则 m 的取值范围是   m < 3 . 5  ;(直接写出结果即可)

(3)当 1 x 3 时,函数 y 的最小值等于6,求 m 的值.

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题