已知抛物线 y = a x 2 - 2 x + 1 ( a ≠ 0 ) 的对称轴为直线 x = 1 .
(1)求 a 的值;
(2)若点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 , 1 < x 2 < 2 .比较 y 1 与 y 2 的大小,并说明理由;
(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A 、 B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C , D ,求线段 AB 与线段 CD 的长度之比.
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动. (1)梯形ABCD的面积等于________; (2)当PQ∥AB时,P点离开D点的时间等于______秒; (3)当P、Q、C三点构成直角三角形时,P点离开D点多长时间?
已知:如图,在正方形中,点、分别在和上,. (1)求证:; (2)连接交于点,延长至点,使,连接、,判断四边形是什么特殊四边形?并证明你的结论.
如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF. (1)求证:AF=CE; (2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证:EO=FO; (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论. (3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形?
如图,正方形ABCD绕点A逆时针旋转no后得到正方形AEFG,EF与CD交于点O. (1)以图中已标有字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为cm2,求旋转的角度n.