已知抛物线 y = a x 2 + c ( a ≠ 0 ) 经过点 P ( 3 , 0 ) 、 Q ( 1 , 4 ) .
(1)求抛物线的解析式;
(2)若点 A 在直线 PQ 上,过点 A 作 AB ⊥ x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC .
①当 Q 与 A 重合时,求 C 到抛物线对称轴的距离;
②若 C 在抛物线上,求 C 的坐标.
如图,AB是⊙O的直径,点E是上一点,∠DAC=∠AED. (1)求证:AC是⊙O的切线; (2)若点E是的中点,连结AE交BC于点F,当BD=5, CD=4时,求DF的值.
某中学以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,一共调查了多少名学生? (2)请把折线统计图(图1)补充完整; (3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数; (4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N. (1)求证:CM=CN; (2)若△CMN的面积与△CDN的面积比为3:1,且CD=4,求线段MN的长.
如图,已知等腰△AOB放置在平面直角坐标系xOy中, OA=OB,点B的坐标为(3,4). (1)求直线AB的解析式; (2)问将等腰△AOB沿x轴正方向平移多少个单位,能使点B落在反比例函数(x>0)的图象上.
先化简,再求值: ,其中m是方程的根