正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.
(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.
已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF, 求证:DE=BF
如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?
已知m=-2,求代数式m2+4m-9的值.
已知直线l1∥l2,且l4和l1、l2分别交于A、B两点,点P为线段AB上.的一个定点(如图1) (1)写出∠1、∠2、∠3、之间的关系并说出理由。 (2)如果点P为线段AB上.的动点时,问∠1、∠2、∠3之间的关系是否发生变化?(不必说理由) (3)如果点P在A、B两点外侧运动时, (点P和点A、点B不重合) ①如图2,当点P在射线AB上运动时,∠1、∠2、∠3之间关系并说出理由。 ②如图3,当点P在射线BA上运动时,∠1、∠2、∠3之间关系(不说理由)
如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个面积是2a2+3ab+b2长方形(要求:所拼图形中每类卡片都要有,卡片之间不能重叠。) 画出示意图,并计算出它的面积。