在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
已知 T = ( a + 3 b ) 2 + ( 2 a + 3 b ) ( 2 a ﹣ 3 b ) + a 2 .
(1)化简 T ;
(2)若关于 x 的方程 x 2 + 2 a x ﹣ a b + 1 = 0 有两个相等的实数根,求 T 的值.
某燃气公司计划在地下修建一个容积为 V ( V 为定值,单位: m 3 )的圆柱形天然气储存室,储存室的底面积 S (单位: m 2 )与其深度 d (单位: m )是反比例函数关系,它的图象如图所示.
(1)求储存室的容积V的值;
(2)受地形条件限制,储存室的深度d需要满足 16 ≤ d ≤ 25 ,求储存室的底面积S的取值范围.
某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.
频数分布表
运动时间t/min
频数
频率
4
0.1
60 ≤ t < 90
7
0.175
a
0.35
9
0.225
6
b
合计
n
1
请根据图表中的信息解答下列问题:
(1)频数分布表中的a= ,b= ,n= ;
(2)请补全频数分布直方图;
(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.
如图,点D,E在△ABC的边BC上, ∠ B = ∠ C , B D = C E ,求证: △ A B D ≌ △ A C E .
在平面直角坐标系 x O y 中,已知抛物线 y = a x 2 + b x 经过 A ( 4 , 0 ) , B ( 1 , 4 ) 两点. P 是抛物线上一点,且在直线 A B 的上方.
(1)求抛物线的解析式;
(2)若 △ O A B 面积是 △ P A B 面积的2倍,求点 P 的坐标;
(3)如图, O P 交 A B 于点 C , P D ∥ B O 交 A B 于点 D .记 △ C D P , △ C P B , △ C B O 的面积分别为 S 1 , S 2 , S 3 .判断 S 1 S 2 + S 2 S 3 是否存在最大值.若存在,求出最大值;若不存在,请说明理由.