如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C
(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
如图,经过点A(-2,0)的一次函数 y=ax+b(a≠0) 与反比例函数 y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0). (1) 求反比例函数和一次函数的解析式; (2)设一次函数与y轴相交于点C,求四边形OBPC的面积.
先化简,再求值:,其中满足.
在缙云广场上,有一种多边形地砖的内角和为540°,请你求出这种多边形地砖 的边数.
已知:如图,点C是线段AB的中点,CD∥BE,∠D=∠E.求证:CD=BE.
解下列不等式,并把解集表示在数轴上:≤.