如图1,抛物线 y = x 2 + bx + c 交 x 轴于 A , B 两点,其中点 A 的坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 ) .
(1)求抛物线的函数解析式;
(2)点 D 为 y 轴上一点,如果直线 BD 与直线 BC 的夹角为 15 ° ,求线段 CD 的长度;
(3)如图2,连接 AC ,点 P 在抛物线上,且满足 ∠ PAB = 2 ∠ ACO ,求点 P 的坐标.
如图,在平面直角坐标系中, (1)描出A(- 4,3)B(-1,0)C(-2,3)三点. (2)△ABC的面积是 (3)作出△ABC关于y轴的对称图形.
(1)求直线y=2x﹣6与坐标轴的交点坐标. (2)“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米 /时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.
(1)计算 (1﹣)2+. (2)解方程组
如图,折叠矩形的一边AD,使点D落在BC边的点F处,AB=8cm,BC=10cm,EC= cm.
观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52× = ×25; ② ×396=693× . (2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并说明理由.