某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?
已知:抛物线y=﹣x2+4x﹣3与x轴相交于A、B两点(A点在B点的左侧),顶点为P.(1)求A、B、P三点坐标;(2)画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;(3)确定此抛物线与直线y=﹣2x+6公共点的个数,并说明理由.
如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
已知关于x的二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有交点;(2)若此抛物线与x轴总有两个交点的横坐标都是整数,求正整数m的值.