如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.
(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
如图,已知CD⊥AB于D,BE⊥AC于E,CD交BE于点O.若OC=OB,求证:点O在∠BAC的平分线上若点O在∠BAC的平分线上,求证:OC=OB
已知,如图A、F、C、D四点在一直线上,AF=CD,AB//DE,且AB=DE,求证:△ABC≌△DEF∠CBF=∠FEC
如图,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且DB=DC。求证:BE=CF
如图,(1)画出△ABC关于y轴的对称图形△A1B1C1;直接写出△ABC关于x轴对称的三角形△A2B2C2的各点坐标。
如图在△ABC 中,AC=BC,ACB=,CDAB,垂足为D,点E在AC上, CE=EA, BE交CD于点G,EFBE交AB于点F,探索线段EF与EG的数量关系,并证明你的结论。