如图在△ABC 中,AC=BC,ACB=,CDAB,垂足为D,点E在AC上, CE=EA, BE交CD于点G,EFBE交AB于点F,探索线段EF与EG的数量关系,并证明你的结论。
如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.(1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的半径.
有100米长的篱笆材料,想围成一个矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,现请你设计矩形仓库的长和宽,使它符合要求.
如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库.(1)求长方形的面积是150平方米,求出长方形两邻边的长;(2)能否围成面积220平方米的长方形?请说明理由.
已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.