初中数学

在等边 ΔABC 中, AB = 6 BD AC ,垂足为 D ,点 E AB 边上一点,点 F 为直线 BD 上一点,连接 EF

(1)将线段 EF 绕点 E 逆时针旋转 60 ° 得到线段 EG ,连接 FG

①如图1,当点 E 与点 B 重合,且 GF 的延长线过点 C 时,连接 DG ,求线段 DG 的长;

②如图2,点 E 不与点 A B 重合, GF 的延长线交 BC 边于点 H ,连接 EH ,求证: BE + BH = 3 BF

(2)如图3,当点 E AB 中点时,点 M BE 中点,点 N 在边 AC 上,且 DN = 2 NC ,点 F BD 中点 Q 沿射线 QD 运动,将线段 EF 绕点 E 顺时针旋转 60 ° 得到线段 EP ,连接 FP ,当 NP + 1 2 MP 最小时,直接写出 ΔDPN 的面积.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, M 经过原点 O ,分别交 x 轴、 y 轴于点 A ( 2 , 0 ) B ( 0 , 8 ) ,连结 AB .直线 CM 分别交 M 于点 D E (点 D 在左侧),交 x 轴于点 C ( 17 , 0 ) ,连结 AE

(1)求 M 的半径和直线 CM 的函数表达式;

(2)求点 D E 的坐标;

(3)点 P 在线段 AC 上,连结 PE .当 AEP ΔOBD 的一个内角相等时,求所有满足条件的 OP 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, BD 是半径为3的 O 的一条弦, BD = 4 2 ,点 A O 上的一个动点(不与点 B D 重合),以 A B D 为顶点作 ABCD

(1)如图2,若点 A 是劣弧 BD ^ 的中点.

①求证: ABCD 是菱形;

②求 ABCD 的面积.

(2)若点 A 运动到优弧 BD ̂ 上,且 ABCD 有一边与 O 相切.

①求 AB 的长;

②写出 ABCD 对角线所夹锐角的正切值.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 ,点 E 是边 AD 的中点,点 F 是对角线 BD 上一动点, ADB = 30 ° .连结 EF ,作点 D 关于直线 EF 的对称点 P

(1)若 EF BD ,求 DF 的长;

(2)若 PE BD ,求 DF 的长;

(3)直线 PE BD 于点 Q ,若 ΔDEQ 是锐角三角形,求 DF 长的取值范围.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

【推理】

如图1,在正方形 ABCD 中,点 E CD 上一动点,将正方形沿着 BE 折叠,点 C 落在点 F 处,连结 BE CF ,延长 CF AD 于点 G

(1)求证: ΔBCE ΔCDG

【运用】

(2)如图2,在【推理】条件下,延长 BF AD 于点 H .若 HD HF = 4 5 CE = 9 ,求线段 DE 的长.

【拓展】

(3)将正方形改成矩形,同样沿着 BE 折叠,连结 CF ,延长 CF BF 交直线 AD G H 两点,若 AB BC = k HD HF = 4 5 ,求 DE EC 的值(用含 k 的代数式表示).

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O BD 为直径, AD ̂ 上存在点 E ,满足 A E ^ = CD ^ ,连结 BE 并延长交 CD 的延长线于点 F BE AD 交于点 G

(1)若 DBC = α ,请用含 α 的代数式表示 AGB

(2)如图2,连结 CE CE = BG .求证: EF = DG

(3)如图3,在(2)的条件下,连结 CG AD = 2

①若 tan ADB = 3 2 ,求 ΔFGD 的周长.

②求 CG 的最小值.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, ABC 是锐角, E BC 边上的动点,将射线 AE 绕点 A 按逆时针方向旋转,交直线 CD 于点 F

(1)当 AE BC EAF = ABC 时,

①求证: AE = AF

②连结 BD EF ,若 EF BD = 2 5 ,求 S ΔAEF S 菱形 ABCD 的值;

(2)当 EAF = 1 2 BAD 时,延长 BC 交射线 AF 于点 M ,延长 DC 交射线 AE 于点 N ,连结 AC MN ,若 AB = 4 AC = 2 ,则当 CE 为何值时, ΔAMN 是等腰三角形.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A 的坐标为 ( - 73 0 ) ,点 B 在直线 l : y = 3 8 x 上,过点 B AB 的垂线,过原点 O 作直线 l 的垂线,两垂线相交于点 C

(1)如图,点 B C 分别在第三、二象限内, BC AO 相交于点 D

①若 BA = BO ,求证: CD = CO

②若 CBO = 45 ° ,求四边形 ABOC 的面积.

(2)是否存在点 B ,使得以 A B C 为顶点的三角形与 ΔBCO 相似?若存在,求 OB 的长;若不存在,请说明理由.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α 90 ° ) ,得到矩形 AB ' C ' D ' ,连结 BD

[ 探究 1 ] 如图1,当 α = 90 ° 时,点 C ' 恰好在 DB 延长线上.若 AB = 1 ,求 BC 的长.

[ 探究 2 ] 如图2,连结 AC ' ,过点 D ' D ' M / / AC ' BD 于点 M .线段 D ' M DM 相等吗?请说明理由.

[ 探究 3 ] 在探究2的条件下,射线 DB 分别交 AD ' AC ' 于点 P N (如图 3 ) ,发现线段 DN MN PN 存在一定的数量关系,请写出这个关系式,并加以证明.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系 xOy 中,点 A 是反比例函数 y = 1 x ( x > 0 ) 图象上的一个动点,连结 AO AO 的延长线交反比例函数 y = k x ( k > 0 , x < 0 ) 的图象于点 B ,过点 A AE y 轴于点 E

(1)如图1,过点 B BF x 轴,于点 F ,连接 EF

①若 k = 1 ,求证:四边形 AEFO 是平行四边形;

②连结 BE ,若 k = 4 ,求 ΔBOE 的面积.

(2)如图2,过点 E EP / / AB ,交反比例函数 y = k x ( k > 0 , x < 0 ) 的图象于点 P ,连结 OP .试探究:对于确定的实数 k ,动点 A 在运动过程中, ΔPOE 的面积是否会发生变化?请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = - 2 x 2 + bx + c 经过点 ( 0 , - 2 ) ,当 x < - 4 时, y x 的增大而增大,当 x > - 4 时, y x 的增大而减小.设 r 是抛物线 y = - 2 x 2 + bx + c x 轴的交点(交点也称公共点)的横坐标, m = r 9 + r 7 - 2 r 5 + r 3 + r - 1 r 9 + 60 r 5 - 1

(1)求 b c 的值;

(2)求证: r 4 - 2 r 2 + 1 = 60 r 2

(3)以下结论: m < 1 m = 1 m > 1 ,你认为哪个正确?请证明你认为正确的那个结论.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + c ( a c 为常数, a 0 ) 经过点 C ( 0 , - 1 ) ,顶点为 D

(Ⅰ)当 a = 1 时,求该抛物线的顶点坐标;

(Ⅱ)当 a > 0 时,点 E ( 0 , 1 + a ) ,若 DE = 2 2 DC ,求该抛物线的解析式;

(Ⅲ)当 a < - 1 时,点 F ( 0 , 1 - a ) ,过点 C 作直线 l 平行于 x 轴, M ( m , 0 ) x 轴上的动点, N ( m + 3 , - 1 ) 是直线 l 上的动点.当 a 为何值时, FM + DN 的最小值为 2 10 ,并求此时点 M N 的坐标.

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,抛物线 y = ( x + 1 ) ( x - a ) (其中 a > 1 ) x 轴交于 A B 两点,交 y 轴于点 C

(1)写出 OCA 的度数和线段 AB 的长(用 a 表示);

(2)若点 D ΔABC 的外心,且 ΔBCD ΔACO 的周长之比为 10 : 4 ,求此抛物线的解析式;

(3)在(2)的前提下,试探究抛物线 y = ( x + 1 ) ( x - a ) 上是否存在一点 P ,使得 CAP = DBA ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,且 B ( - 1 , 0 ) C ( 0 , 3 )

(1)求抛物线的解析式;

(2)如图1,点 P 是抛物线上位于直线 AC 上方的一点, BP AC 相交于点 E ,当 PE : BE = 1 : 2 时,求点 P 的坐标;

(3)如图2,点 D 是抛物线的顶点,将抛物线沿 CD 方向平移,使点 D 落在点 D ' 处,且 D D ' = 2 CD ,点 M 是平移后所得抛物线上位于 D ' 左侧的一点, MN / / y 轴交直线 O D ' 于点 N ,连结 CN .当 5 5 D ' N + CN 的值最小时,求 MN 的长.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线与 x 轴分别交于 A B 两点,与 y 轴交于点 C ( 0 , 6 ) ,抛物线的顶点坐标为 E ( 2 , 8 ) ,连结 BC BE CE

(1)求抛物线的表达式;

(2)判断 ΔBCE 的形状,并说明理由;

(3)如图2,以 C 为圆心, 2 为半径作 C ,在 C 上是否存在点 P ,使得 BP + 1 2 EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

初中数学解答题