已知抛物线 y = - 2 x 2 + bx + c 经过点 ( 0 , - 2 ) ,当 x < - 4 时, y 随 x 的增大而增大,当 x > - 4 时, y 随 x 的增大而减小.设 r 是抛物线 y = - 2 x 2 + bx + c 与 x 轴的交点(交点也称公共点)的横坐标, m = r 9 + r 7 - 2 r 5 + r 3 + r - 1 r 9 + 60 r 5 - 1 .
(1)求 b 、 c 的值;
(2)求证: r 4 - 2 r 2 + 1 = 60 r 2 ;
(3)以下结论: m < 1 , m = 1 , m > 1 ,你认为哪个正确?请证明你认为正确的那个结论.
(自贡)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
(南充)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.
(南充)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.
(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
(乐山)求不等式组的解集,并把它们的解集在数轴上表示出来.