高中数学

已知函数 f x ) = a e 2 x + ( a 2 ) e x x .

(1)讨论 f ( x ) 的单调性;

(2)若 f ( x ) 有两个零点,求 a的取值范围.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知椭圆C: x 2 a 2 + y 2 b 2 = 1 a > b > 0 ,四点P 1(1,1),P 2(0,1),P 3 1 3 2 ,P 4 1 3 2 中恰有三点在椭圆C上.

(1)求 C的方程;

(2)设直线 l不经过 P 2点且与 C相交于 AB两点.若直线 P 2 A与直线 P 2 B的斜率的和为-1,证明: l过定点.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N ( μ , σ 2 )

(1)假设生产状态正常,记 X表示一天内抽取的16个零件中其尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件数,求 P ( X 1 ) X 的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 x ̄ = 1 16 i = 1 16 x i = 9 . 97 s = 1 16 i = 1 16 ( x i - x ̄ ) 2 = 1 16 ( i = 1 16 x i 2 - 16 x ̄ 2 ) 2 0 . 212 ,其中 x i 为抽取的第 i 个零件的尺寸, i = 1 , 2 , , 16

用样本平均数 x ̄ 作为 μ 的估计值 μ ̂ ,用样本标准差 s 作为 σ 的估计值 σ ̂ ,利用估计值判断是否需对当天的生产过程进行检查?剔除 ( μ ̂ - 3 σ ̂ , μ ̂ + 3 σ ̂ ) 之外的数据,用剩下的数据估计 μ σ (精确到0.01).

附:若随机变量 Z 服从正态分布 N ( μ , σ 2 ) ,则 P ( μ - 3 σ < Z < μ + 3 σ ) = 0 . 997 4

0 . 997 4 16 = 0 . 959 2 0 . 008 0 . 09

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图,在四棱锥 P - ABCD 中, AB / / CD ,且 BAP = CDP = 9 0 .

image.png

(1)证明:平面 PAB 平面 PAD

(2)若 PA = PD = AB = DC APD = 9 0 ,求二面角 A - PB - C 的余弦值.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

△ABC的内角A,B,C的对边分别为a,b,c,已知 ABC 的面积为 a 2 3 sin A    

(1)求 sinBsinC ;

(2)若 6 cosBcosC = 1 a = 3 ,求 ABC 的周长.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

[选修4-5:不等式选讲]

已知 a > 0 , b > 0 , a 3 + b 3 = 2 ,证明:

(1) ( a + b ) ( a 3 + b 3 ) 4

(2) a + b 2

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

[选修4-4:坐标系与参数方程]

在直角坐标系 x O y 中,以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ cos θ = 4

(1) M为曲线 C 1 上的动点,点 P在线段 OM上,且满足 | OM | | OP | = 16 ,求点 P的轨迹 C 2 的直角坐标方程;

(2)设点 A的极坐标为 ( 2 , π 3 ) ,点 B在曲线 C 2 上,求 ΔOAB 面积的最大值.

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = a x 3 - ax - x ln x , f ( x ) 0 .

(1)求 a

(2)证明: f ( x ) 存在唯一的极大值点 x 0 ,且 e - 2 < f ( x 0 ) < 2 - 3 .

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

设O为坐标原点,动点M在椭圆 C x 2 2 + y 2 = 1 上,过M做x轴的垂线,垂足为N,点P满足 NP = 2 NM .

(1) 求点 P的轨迹方程;

(2) 设点 Q在直线 x = - 3 上,且 OP PQ = 1 .证明:过点 P且垂直于 OQ 的直线 lC的左焦点 F.

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图,四棱锥 P - ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD AB = BC = 1 2 AD , BAD = ABC = 9 0 o , E PD 的中点.

(1)证明:直线 CE / / 平面 PAB ;

(2)点 M在棱 PC上,且直线 BM与底面 ABCD所成锐角为 4 5 o ,求二面角 M - AB - D 的余弦值.

image.png

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:

image.png

(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:


箱产量<50kg

箱产量≥50kg

旧养殖法



新养殖法



(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)

P(

0.050

0.010

0.001

k

3.841

6.635

10.828

K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

ΔABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 sin ( A + C ) = 8 sin 2 B 2

(1)求 cos B

(2)若 a + c = 6 , ΔABC 面积为2,求 b .

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知椭圆 x 2 a 2 + y 2 b 2 = 1 a b 0 的左焦点为 F (﹣ c 0 ,右顶点为A,点E的坐标为(0,c), EFA 的面积为 b 2 2

(I)求椭圆的离心率;

(II)设点Q在线段AE上, | FQ | = 3 2 c ,延长线段FQ与椭圆交于点P,点M,N在x轴上, PM QN ,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.

(i)求直线FP的斜率;

(ii)求椭圆的方程.

来源:2017年全国统一高考数学试卷(天津卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

设a, b R | a | 1 .已知函数 f x = x 3 6 x 2 3 a a 4 x + b g x = e x f x

(Ⅰ)求 f x 的单调区间;

(Ⅱ)已知函数 y = g x y = e x 的图象在公共点 x 0    y 0 处有相同的切线,

(i)求证: f x )在 x = x 0 处的导数等于0;

(ii)若关于x的不等式 g x e x 在区间 [ x 0 1 x 0 + 1 ] 上恒成立,求b的取值范围.

来源:2017年全国统一高考数学试卷(天津卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知 { a n } 为等差数列,前 n 项和为 S n n N * { b n } 是首项为2的等比数列,且公比大于0, b 2 + b 3 = 12 b 3 = a 4 2 a 1    S 11 = 11 b 4

(Ⅰ)求 { a n } { b n } 的通项公式;

(Ⅱ)求数列 { a 2 n b 2 n - 1 } 的前n项和 n N *

来源:2017年全国统一高考数学试卷(天津卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

高中数学解答题