如图,四棱锥 P - ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD , AB = BC = 1 2 AD , ∠ BAD = ∠ ABC = 9 0 o , E 是 PD 的中点.
(1)证明:直线 CE / / 平面 PAB ;
(2)点 M在棱 PC上,且直线 BM与底面 ABCD所成锐角为 4 5 o ,求二面角 M - AB - D 的余弦值.
△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1. (1)求证:a,b,c成等差数列;(2)若C=,求的值.
等差数列中, (1)求的通项公式; (2)设
已知成等比数列, 公比为, 求证:.
为第二象限角,且,求的值.
已知数列{an}满足a1=2,an+1·an(n∈N+). (1)求a2,a3,并求数列{an}的通项公式. (2)设cn=,求证:c1+c2+c3+…+cn<.