等差数列中,(1)求的通项公式;(2)设
在平面直角坐标系.x0y中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线 C的极坐标方程为: .(I)求曲线的直角坐标方程;(II)若直线的参数方程为(t为参数),直线与曲线C相交于A、B两点,求|AB|的值.
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆O于点E、F,点M在EF上,且:(I)求证:PA·PB=PM·PQ.(II)求证:.
设函数F(x )=x2+aln(x+1)(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;(II)若函数y=f(x)有两个极值点x1,x2且,求证:.
椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.(I)若ΔABF2为正三角形,求椭圆的离心率;(II)若椭圆的离心率满足,为坐标原点,求证:.
如图,在四棱锥P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O点.(I)求证:平面PBD丄平面PAC.(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.