如图,在四棱锥P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O点.(I)求证:平面PBD丄平面PAC.(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.
已知函数.(1)求函数的单调区间; (2)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点. (1) 求椭圆的方程; (2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
如图,正三棱柱中,侧面是边长为2的正方形,是的中点,在棱上. (1)当时,求三棱锥的体积. (2)当点使得最小时,判断直线与是否垂直,并证明结论.
已知集合,,.从集合中各取一个元素分别记为,设方程为. (1)求方程表示焦点在轴上的双曲线的概率. (2)求方程不表示椭圆也不表示双曲线的概率.
已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项 (1)求和的通项公式. (2)设,数列的前项和为,求证:.