已知等差数列,公差,前项和为,且满足,.(Ⅰ)求数列的通项公式及前项和(Ⅱ)设,若数列也是等差数列,试确定非零常数,并求数列的前 项和.
(本题满分10分) 选修4—5:不等式选讲 已知关于的不等式对于任意的恒成立 (Ⅰ)求的取值范围; (Ⅱ)在(Ⅰ)的条件下求函数的最小值.
(本题满分10分) 选修4—4:极坐标与参数方程 在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为为参数). (Ⅰ)求直线的直角坐标方程; (Ⅱ)若直线和曲线C只有一个交点,求的值.
(本小题满分12分)已知函数 (Ⅰ)当对任意的实数x恒成立,求a的取值范围; (Ⅱ)若.
(本小题满分12分)如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的左侧),且. (Ⅰ)求圆的方程; (Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.
(本小题满分12分)如图,三棱柱中,平面,,, 点在线段上,且,. (Ⅰ)求证:直线与平面不平行; (Ⅱ)设平面与平面所成的锐二面角为,若,求的长; (Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.