设函数F(x )=x2+aln(x+1)(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;(II)若函数y=f(x)有两个极值点x1,x2且,求证:.
如图,在三棱柱 ABC - A 1 B 1 C 1 中, C C 1 ⊥ 平面 ABC , AC ⊥ BC , AC = BC = 2 , C C 1 = 3 ,点 D , E 分别在棱 A A 1 和棱 C C 1 上,且 AD = 1 CE = 2 , M 为棱 A 1 B 1 的中点.
(Ⅰ)求证: C 1 M ⊥ B 1 D ;
(Ⅱ)求二面角 B - B 1 E - D 的正弦值;
(Ⅲ)求直线 AB 与平面 D B 1 E 所成角的正弦值.
在 △ ABC 中,角所对的边分别为 a , b , c .已知 a = 2 2 , b = 5 , c = 13 .
(Ⅰ)求角 C 的大小;
(Ⅱ)求 sin A 的值;
(Ⅲ)求 sin 2 A + π 4 的值.
已知 1 < a ≤ 2 ,函数 f x = e x - x - a ,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在 ( 0 , + ∞ ) 上有唯一零点;
(Ⅱ)记x0为函数在 ( 0 , + ∞ ) 上的零点,证明:
(ⅰ) a - 1 ≤ x 0 ≤ 2 ( a - 1 ) ;
(ⅱ) x 0 f ( e x 0 ) ≥ ( e - 1 ) ( a - 1 ) a .
如图,已知椭圆 C 1 : x 2 2 + y 2 = 1 ,抛物线 C 2 : y 2 = 2 px ( p > 0 ) ,点 A是椭圆 C 1 与抛物线 C 2 的交点,过点 A的直线 l交椭圆 C 1 于点 B,交抛物线 C 2 于 M( B, M不同于 A).
(Ⅰ)若 p = 1 16 ,求抛物线 C 2 的焦点坐标;
(Ⅱ)若存在不过原点的直线 l使 M为线段 AB的中点,求 p的最大值.
已知数列{an},{bn},{cn}中, a 1 = b 1 = c 1 = 1 , c n = a n + 1 - a n , c n + 1 = b n b n + 2 ⋅ c n ( n ∈ N * ) .
(Ⅰ)若数列{bn}为等比数列,且公比 q > 0 ,且 b 1 + b 2 = 6 b 3 ,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差 d > 0 ,证明: c 1 + c 2 + ⋯ + c n < 1 + 1 d .