已知数列{an},{bn},{cn}中, a 1 = b 1 = c 1 = 1 , c n = a n + 1 - a n , c n + 1 = b n b n + 2 ⋅ c n ( n ∈ N * ) .
(Ⅰ)若数列{bn}为等比数列,且公比 q > 0 ,且 b 1 + b 2 = 6 b 3 ,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差 d > 0 ,证明: c 1 + c 2 + ⋯ + c n < 1 + 1 d .
(本小题12分)如图:四棱锥P—ABCD中,底面ABCD 是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动. (1)证明:无论点E在BC边的何处,都有PE⊥AF; (2)当BE等于何值时,PA与平面PDE所成角的大小为45°.
(本小题12分)已知函数()在区间上有最大值和最小值.设, (1)求、的值; (2)若不等式在上有解,求实数的取值范围.
(本小题12分)设函数, (1)求的周期和对称中心; (2)求在上值域.
(本小题12分)已知全集U=R,非空集合<,<. (1)当时,求; (2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知点,是抛物线上相异两点,且满足. (Ⅰ)若的中垂线经过点,求直线的方程; (Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.