已知数列{an},{bn},{cn}中, a 1 = b 1 = c 1 = 1 , c n = a n + 1 - a n , c n + 1 = b n b n + 2 ⋅ c n ( n ∈ N * ) .
(Ⅰ)若数列{bn}为等比数列,且公比 q > 0 ,且 b 1 + b 2 = 6 b 3 ,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差 d > 0 ,证明: c 1 + c 2 + ⋯ + c n < 1 + 1 d .
(本小题6分)已知直线平行于直线,并且与两坐标轴围成的三角形的面积为24,求直线的方程。
甲、乙、丙三人轮流投掷一枚质地均匀的正方体骰子,规则如下:如果某人某一次掷出1点,则下一次继续由此人掷,如果掷出其他点数,则另外两个人抓阄决定由谁来投掷,且第一次由甲投掷。 设第n次由甲投掷的概率是,由乙或丙投掷的概率均为.(1)计算的值;(2)求数列的通项公式;(3)如果一次投掷中,由任何两个人投掷的概率之差的绝对值小于0.001,则称此次投掷是“机会接近均等”,那么从第几次投掷开始,机会接近均等?
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
求由曲线与,,所围成的平面图形的面积(画出图形)。
已知的二项展开式中所有奇数项的系数之和为512,(1)求展开式的所有有理项.(2)求展开式中项的系数.