某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x)万元,当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不少于80千件时,C(x)=51x+-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设函数.(1)若曲线在点处与直线相切,求a,b的值;(2)求函数的单调区间.
如图,把边长为10的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).(1)求出体积V与高h的函数关系式并指出其定义域;(2)问当为多少时,体积V最大?最大值是多少?
设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。
的三个内角成等差数列,求证:
已知是复数,和均为实数.(1)求复数;(2)若复数在复平面内对应点在第一象限,求实数t的取值范围.