某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x)万元,当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不少于80千件时,C(x)=51x+-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
如图,的角平分线的延长线交它的外接圆于点 (Ⅰ)证明:∽△; (Ⅱ)若的面积,求的大小.
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,的结果如下表: 甲厂: 乙厂: (1)试分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
附:
已知三角形ABC的三边长为a、b、c,且其中任意两边长均不相等.若,,成等差数列.(1)比较与的大小,并证明你的结论;(2)求证B不可能是钝角
通过市场调查,得到某产品的资金投入(万元)与获得的利润(万元)的数据,如下表所示: (1)根据上表提供的数据,用最小二乘法求线性回归直线方程; (2)现投入资金(万元),求估计获得的利润为多少万元.
一个口袋中装有大小相同的个红球(且)和个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。 (Ⅰ)试用表示一次摸奖中奖的概率; (Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求的最大值. (Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的个红球全部作如下标记:记上号的有个(),其余的红球记上号,现从袋中任取一球。表示所取球的标号,求的分布列、期望和方差.