如图,在三棱柱 ABC - A 1 B 1 C 1 中, C C 1 ⊥ 平面 ABC , AC ⊥ BC , AC = BC = 2 , C C 1 = 3 ,点 D , E 分别在棱 A A 1 和棱 C C 1 上,且 AD = 1 CE = 2 , M 为棱 A 1 B 1 的中点.
(Ⅰ)求证: C 1 M ⊥ B 1 D ;
(Ⅱ)求二面角 B - B 1 E - D 的正弦值;
(Ⅲ)求直线 AB 与平面 D B 1 E 所成角的正弦值.
(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在直线交椭圆于,两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.
(本小题共13分)已知函数,其中. (Ⅰ)求证:函数在区间上是增函数; (Ⅱ)若函数在处取得最大值,求.
(本小题共14分)如图,在四棱锥中,底面为菱形,,为的中点,. (Ⅰ)求证:平面; (Ⅱ)点在线段上,,试确定的值,使平面; (Ⅲ)若平面,平面平面,求二面角的大小.
(本小题共13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且, . (Ⅰ)求与; (Ⅱ)证明:≤.
(本小题共13分)已知△中,角,,的对边分别为,,,且,. (Ⅰ)若,求; (Ⅱ)若,求△的面积.