如图,在三棱柱 ABC - A 1 B 1 C 1 中, C C 1 ⊥ 平面 ABC , AC ⊥ BC , AC = BC = 2 , C C 1 = 3 ,点 D , E 分别在棱 A A 1 和棱 C C 1 上,且 AD = 1 CE = 2 , M 为棱 A 1 B 1 的中点.
(Ⅰ)求证: C 1 M ⊥ B 1 D ;
(Ⅱ)求二面角 B - B 1 E - D 的正弦值;
(Ⅲ)求直线 AB 与平面 D B 1 E 所成角的正弦值.
在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点的极坐标为,曲线的参数方程为. (Ⅰ)求直线的直角坐标方程; (Ⅱ)求点到曲线上的点的距离的最小值.
一射击测试每人射击二次,甲每击中目标一次记10分,没有击中记0分,每次击中目标的概率为;乙每击中目标一次记20分,没有击中记0分,每次击中目标的概率为. (Ⅰ)求甲得10分的概率; (Ⅱ)求甲乙两人得分相同的概率.
从5名男生和4名女生中选出4人去参加辩论比赛,问: (Ⅰ)如果4人中男生和女生各选2人,有多少种选法? (Ⅱ)如果男生中的甲和女生中的乙必须在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?
设直线经过点,倾斜角, (Ⅰ)写出直线的参数方程; (Ⅱ)设直线与圆相交与两点A,B.求点P到A、B两点的距离的和与积.
在二项式的展开式中, (Ⅰ)求二项式系数之和, (Ⅱ)求各项系数之和, (Ⅲ)求奇数项系数之和.