某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示:(Ⅰ)估计这次考试的及格率(分及以上为及格)和平均分;(Ⅱ)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过两点.(1)求椭圆的方程;(2)已知定点,点为椭圆上的动点,求最大值及相应的点坐标.
如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.
设条件:实数满足;条件:实数满足且命题“若,则”的逆否命题为真命题,求实数的取值范围.
在平面直角坐标系中,与向量平行的直线经过椭圆的右焦点,与椭圆相交于、两点.(1)若点在轴的上方,且,求直线的方程;(2)若,,求△的面积;(3)当(且)变化时,是否存在一点,使得直线和的斜率之和为.若存在,请证明结论;若不存在,请说明理由.
已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.(1)若|AB|=,求|MQ|、Q点的坐标以及直线MQ的方程;(2)求证:直线AB恒过定点.