某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示:(Ⅰ)估计这次考试的及格率(分及以上为及格)和平均分;(Ⅱ)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.
(本小题满分15分) 已知函数 求的单调区间; 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
(本小题满分14分)如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
(本题满分15分)已知曲线C上的动点满足到点的距离比到直线的距离小1.求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明:;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.
(本小题满分14分)已知是正数组成的数列,,且点()(nN*)在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,,求数列的通项公式.
(本题15分)如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.