如图,已知椭圆 C 1 : x 2 2 + y 2 = 1 ,抛物线 C 2 : y 2 = 2 px ( p > 0 ) ,点 A是椭圆 C 1 与抛物线 C 2 的交点,过点 A的直线 l交椭圆 C 1 于点 B,交抛物线 C 2 于 M( B, M不同于 A).
(Ⅰ)若 p = 1 16 ,求抛物线 C 2 的焦点坐标;
(Ⅱ)若存在不过原点的直线 l使 M为线段 AB的中点,求 p的最大值.
求使函数y=-2sin2x取得最大值的x的集合,并指出最大值是什么。
求函数y=tan(x+)的定义域.
本题满分12分) 在直角坐标平面内,已知点,动点满足. (1)求动点的轨迹的方程; (2)过点作直线与轨迹交于两点,线段的中点为,轨迹的右端点为点N,求直线MN的斜率的取值范围.
如图已知,点P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,,,。 (1)求证:; (2)求直线PB与平面ABE所成的角; (3)求A点到平面PCD的距离。
已知数列{}的首项,通项(为常数),且成等差数列,求:(1)的值; (2)数列{}的前项的和的公式。