如图,已知椭圆 C 1 : x 2 2 + y 2 = 1 ,抛物线 C 2 : y 2 = 2 px ( p > 0 ) ,点 A是椭圆 C 1 与抛物线 C 2 的交点,过点 A的直线 l交椭圆 C 1 于点 B,交抛物线 C 2 于 M( B, M不同于 A).
(Ⅰ)若 p = 1 16 ,求抛物线 C 2 的焦点坐标;
(Ⅱ)若存在不过原点的直线 l使 M为线段 AB的中点,求 p的最大值.
设是等差数列,求证:以bn=为通项公式的数列为等差数列
已知数列是等差数列,其前n项和为, (1)求数列的通项公式; (2)设p、q是正整数,且p≠q,证明:
设数列的前n项和为Sn=2n2,为等比数列,且,求数列和的通项公式
(本小题满分12分)已知二次函数对任意实数都满足且 (Ⅰ)求的表达式; (Ⅱ)设求证:上为减函数; (Ⅲ)在(Ⅱ)的条件下,证明:对任意,恒有
(本小题满分12分)已知函数 (Ⅰ)若函数在上为增函数,求正实数的取值范围; (Ⅱ)设,求证: