设a, b ∈ R , | a | ≤ 1 .已知函数 f ( x ) = x 3 ﹣ 6 x 2 ﹣ 3 a ( a ﹣ 4 ) x + b , g ( x ) = e x f ( x ) .
(Ⅰ)求 f ( x ) 的单调区间;
(Ⅱ)已知函数 y = g ( x ) 和 y = e x 的图象在公共点 ( x 0 , y 0 ) 处有相同的切线,
(i)求证: f ( x )在 x = x 0 处的导数等于0;
(ii)若关于x的不等式 g ( x ) ≤ e x 在区间 [ x 0 ﹣ 1 , x 0 + 1 ] 上恒成立,求b的取值范围.
设函数. (Ⅰ)求的最小正周期. (Ⅱ)若函数与的图像关于直线对称,求当时的最大值.
在△ABC中,BC=,AC=3,sinC="2sinA" (Ⅰ)求AB的值 (Ⅱ)求sin的值
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为. (Ⅰ)求的解析式; (Ⅱ)当,求的值域.
△中,所对的边分别为,,. (1)求; (2)若,求
在,已知,求角A,B,C的大小。