设等比数列的前n项和为Sn,已知(1)求数列通项公式;(2)在与之间插入n个数,使这n+2个数组成一个公差为的等差数列。(Ⅰ)求证:(Ⅱ)在数列中是否存在三项(其中m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由
已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”. (1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围; (3)若“”是真命题,求实数的取值范围.
已知。 (1)若,求的展开式中的系数; (2)证明:。
抛掷A,B,C三枚质地不均匀的纪念币,它们正面向上的概率如下表所示;
将这三枚纪念币同时抛掷一次,设表示出现正面向上的纪念币的个数。 (1)求的分布列及数学期望; (2)在概率中,若的值最大,求a的最大值。
曲线的参数方程为(其中为参数),M是曲线上的动点,且M是线段OP的中点,P点的轨迹为曲线,直线l的方程为,直线l与曲线交于A,B两点。 (1)求曲线的普通方程; (2)求线段AB的长。
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(-2,4)。 (1)求矩阵M及其矩阵M的另一个特征值; (2)求直线在矩阵M的作用下的直线的方程。