如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC;(Ⅲ)(理科)当二面角E﹣BD﹣C的大小为45°时,试判断点E在SC上的位置,并说明理由.
已知函数是常数且)在区间上有. (1)求的值; (2)若当时,求的取值范围;
已知二次函数满足条件和. (1)求; (2)求在区间上的最大值和最小值.
若角的终边过点P, (1)求的值 (2)试判断的符号
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC 及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC. (1)求证:AC⊥DE; (2)求二面角A-DE-C的余弦值。
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为记. (1)求随机变量的最大值,并求事件“取得最大值”的概率; (2)求随机变量的分布列和数学期望.