已知椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,四点P 1(1,1),P 2(0,1),P 3 ( – 1 , 3 2 ) ,P 4 ( 1 , 3 2 ) 中恰有三点在椭圆C上.
(1)求 C的方程;
(2)设直线 l不经过 P 2点且与 C相交于 A, B两点.若直线 P 2 A与直线 P 2 B的斜率的和为-1,证明: l过定点.
选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,已知曲线:与曲线:交于不同的两点,求的值.
选修4—2:矩阵与变换 (本小题满分10分) 已知矩阵,,试计算:.
如图,是⊙的一条切线,切点为,,,都是⊙的割线, 已知. 求证: (1); (2).
(本小题满分16分) 已知数列是各项均为正数的等差数列. (1)若,且,,成等比数列,求数列的通项公式; (2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值; (3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.
(本小题满分16分) 已知函数. (1)当时,若函数在上为单调增函数,求的取值范围; (2)当且时,求证:函数f (x)存在唯一零点的充要条件是; (3)设,且,求证:<.