有一个容量为50的样本,数据的分组及各组的频数如下: [12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9; [21.5,24.5),11;[24.5,27.5),10“27.5,30.5),5; [30.5,33.5],4. (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计数据落在[15.5,24.5)的频率约是多少.
已知(I)若,求的值;(II)若,求的值。
已知平面上三个向量的模均为1,它们相互之间的夹角均为。(I)求证:;(II)若,求的取值范围。
设函数,其中常数a>1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数的图象是曲线C,直线与曲线C相切于点(1,3).(1)求函数的解析式;(2)求函数的递增区间;(3)求函数上的最大值和最小值.