学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多?有多少件?(3)经过评比,第4组和第6组分别有10件、2件作品获奖,这两组 哪 组获奖率较高?
已知函数 (为常数)的图像与轴交于点,曲线在点处的切线斜率为.(1)求的值及函数的极值; (2)证明:当时,.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且(1)写出年利润(万元)关于年产品(千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)
在中,的对边分别为且成等差数列.(1)求的值;(2)求的范围.
在中,三个内角,,的对边分别为,,,其中,且(1)求证:是直角三角形;(2)设圆过三点,点位于劣弧上,,用的三角函数表示三角形的面积,并求面积最大值.
设命题函数的定义域为;命题对一切的实数恒成立,如果命题“”为假命题,求实数的取值范围.