学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多?有多少件?(3)经过评比,第4组和第6组分别有10件、2件作品获奖,这两组 哪 组获奖率较高?
已知函数,,.(1)求证:函数在上单调递增;(2)若函数有四个零点,求的取值范围.
已知函数的部分图象如图所示.(1)试确定函数的解析式;(2)若,求的值.
已知集合,,,,并且是的充分条件,求实数的取值范围.
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.(1)求抛物线M的方程.(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知函数(m为常数,e=2.71828…是自然对数的底数),函数 的最小值为1,其中 是函数f(x)的导数.(1)求m的值.(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.