设O为坐标原点,动点M在椭圆 C : x 2 2 + y 2 = 1 上,过M做x轴的垂线,垂足为N,点P满足 NP ⃗ = 2 NM ⃗ .
(1) 求点 P的轨迹方程;
(2) 设点 Q在直线 x = - 3 上,且 OP ⃗ ⋅ PQ ⃗ = 1 .证明:过点 P且垂直于 OQ 的直线 l过 C的左焦点 F.
已知
如图,ABC和DBC所在的平面互相垂直,且AB=BC=BD,CBA=DBC= 60°,(1) 求证:直线AD⊥直线BC;(2)求直线AD与平面BCD所成角的大小。
某高速公路某施工工地需调运建材100吨,可租用装载的卡车和农用车分别为10辆和20辆,若每辆卡车装载8吨,运费960元,每辆农用车装载2.5吨,运费360元,问两种车各租用多少辆时,才能一次性装完且总费用最低?
如图为函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分, 试求该函数的一个解析式.
已知数列满足, (1)求;(2)判断20是不是这个数列的项,并说明理由; (3)求这个数列前n项的和。