已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
(本小题满分12分已知等差数列{}中,求{}前n项和
(本小题满分10分) 已知函数.求的单调区间;
(本小题满分14分) 定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且 (1)求点M的轨迹C的方程; (2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段上 是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。
(本小题满分13分)已知函数 (1)求函数的最大值; (2)当时,求证;
(本小题满分12分)已知函数. (1)求函数f(x)的定义域、值域; (2)是否存在实数,使得函数f(x)满足:对于区间(2,+∞)上使函数f(x)有意义的一切x,都有f(x)≥0.