已知函数
(1) 时,求 在点 处的切线方程;
(2) 有 个零点, 且 .
(i)求 的取值范围;
(ii)证明 .
已知数列 是等差数列, 是等比数列, .
(1)求 , 的通项公式;
(2) , ,有 ,
(i)求证:对任意实数 ,均有 ;
(ii)求 所有元素之和.
已知椭圆 的左焦点为 ,右顶点为 , 为 上一点,且直线 的斜率为 , 的面积为 ,离心率为 .
(1)求椭圆的方程;
(2)过点 的直线与椭圆有唯一交点 (异于点 ),求证: 平分 .
正方体 的棱长为 , 分别为 中点, .

(1)求证: 平面 ;
(2)求平面 与平面 夹角的余弦值;
(3)求三棱锥 的体积.
在 中,角 的对边分别为 .已知 , , .
(1)求 的值;
(2)求 的值;
(3)求 的值.
在直角坐标系 中,点 到 轴的距离等于点 到点 的距离,记动点 的轨迹为 .
(1)求 的方程;
(2)已知矩形 有三个顶点在 上,证明:矩形 的周长大于 .
甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 ,乙每次投篮的命中率均为 .由抽签确定第 次投篮的人选,第 次投篮的人是甲、乙的概率各为 .
(1)求第 次投篮的人是乙的概率;
(2)求第 次投篮的人是甲的概率;
(3)已知:若随机变量 服从两点分布,且 , 则 .记前 次(即从第 次到第 次投篮)中甲投篮的次数为 ,求 .
设等差数列 的公差为 ,且 .令 ,记 , 分别为数列 , 的前 项和.
(1)若 , ,求 的通项公式;
(2)若 为等差数列,且 ,求 .
如图,在正四棱柱 中, , .点 , , , 分别在棱 , , , 上, , , .
(1)证明: ;
(2)点 在棱 上,当二面角 为 时,求 .

[选修4-5:不等式选讲]
已知 .
(1)求不等式 的解集;
(2)在直角坐标系 中,求不等式组 所确定的平面区域的面积.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 ( 为参数, ).
(1)写出 的直角坐标方程;
(2)若直线 既与 没有公共点,也与 没有公共点、求 的取值范围.
已知函数 .
(1)当 时,求曲线 在点 处的切线方程;
(2)是否存在 , ,使得曲线 关于直线 对称,若存在,求 , 的值,若不存在,说明理由;
(3)若 在 存在极值,求 的取值范围.