已知函数 f x = 1 x + a ln 1 + x .
(1)当 a=-1 时,求曲线 y=f x 在点 1 , f 1 处的切线方程;
(2)是否存在 a , b ,使得曲线 y=f 1 x 关于直线 x=b 对称,若存在,求 a , b 的值,若不存在,说明理由;
(3)若 f x 在 0 , + ∞ 存在极值,求 a 的取值范围.
(本小题满分7分)选修4—4:坐标系与参数方程在直角坐标系中,直线的方程为,曲线的参数方程为.(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值.
(本小题满分7分)选修4-2:矩阵与变换已知矩阵 .(1)求的逆矩阵;(2)求矩阵的特征值、和对应的一个特征向量、.
(本小题满分14分)已知函数的导函数是,在处取得极值,且,(1)求的极大值和极小值;(2)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
(本小题满分13分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形是原棚户建筑用地,测量可知边界万米,万米,万米.(1)请计算原棚户区建筑用地的面积及圆面的半径的值;(2)因地理条件的限制,边界、不能变更,而边界、可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧上设计一点;使得棚户区改造的新建筑用地的面积最大,并求最大值.
(本小题满分13分)若向量其中,记函数,若函数的图像与直线(为常数)相切,并且切点的横坐标依次成公差为的等差数列.(1)求的表达式及的值;(2)将函数的图像向左平移,得到的图像,当时,与图象的交点横坐标成等比数列,求钝角的值.